Prediction of hard rock TBM penetration rate based on Data Mining techniques
ثبت نشده
چکیده
The aim of this work is to use Data Mining tools to develop models for the prediction of hard rock tunnel boring machine (TBM) penetration rate (ROP). A database published by Yagiz (2008) was used to develop these models. The parameters of the database were the uniaxial compressive strength (UCS), an index used to quantify the brittleness and toughness and denominated peak slope index (PSI), the distance between the planes of weakness (DPW), the angle between tunnel axis and the planes of weakness (α) and the output parameter rate of penetration (ROP). The R program environment was used as a modeling tool to apply the artificial neural networks (ANN) and the support vector machine (SVM) algorithms and the corresponding models. These models were compared with two equations presented by Yagiz (2008) and Yagiz and Karahan (2011). It was concluded that the ANN model has the best performance. Moreover, these new models allowed computing the importance of the different input parameters for predicting machine performance. It was concluded that PSI is the most important parameter and UCS is the less important parameter. RÉSUMÉ : L'objectif de cette étude s’agit d'utiliser des outils de Data Mining en vue de développer des modèles de prévision de la taux de pénétration d’un tunnelier dans les roches dures (ROP). Une base de données publiée par Yagiz (2008) a été utilisée pour développer ces modèles. Les paramètres de la base de données comprend la résistance en compression uniaxiale (UCS), un index que permettre mesurer la fragilité et la ténacité appelé d’index de pic maximal (PSI), la distance entre les plans de faiblesse (DPW), l'angle entre l'axe du tunnel et le des plans de faiblesse (α) et le paramètre de sortie dénommé de taux de pénétration (ROP). L'environnement du programme R a été utilisé comme un outil de modélisation pour appliquer les algorithmes des réseaux de neurones artificiels et des machines à vecteurs de support et leurs modèles correspondants. Ces modèles ont été comparés à deux équations présentées par Yagiz (2008) et Yagiz et Karahan (2011). On a conclu que le modèle des réseaux de neurones artificiels a été la meilleure performance. En outre, ces nouveaux modèles ont permis le calcul de l'importance des différents paramètres d'entrée pour prévoir la performance de la machine. Il a été conclu que l'PSI est le paramètre le plus important et l’UCS est le paramètre moins important.
منابع مشابه
TUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION
key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...
متن کاملEstimation of penetration rate of tunnel boring machines using Monte-Carlo simulation method
One of the most important parameters used for determining the performance of tunnel boring machines (TBMs) is their penetration rate. The parameters affecting the penetration rate can be divided in two categories. The first category is the controllable parameters such as the TBM technical characteristics, and type and geometry of the tunnel, and the second one is the uncontrollable parameters s...
متن کاملEvaluation of TBM Utilization Using Rock Mass Rating System: A Case Study of Karaj-Tehran Water Conveyance Tunnel (Lots 1 and 2)
Successful application of a TBM in a project requires investigating both the ground conditions and the machine and backup system design features. Prediction of the machine performance is very important as it has a big effect on the duration of the project and the costs. In this respect, both penetration rate and advance rate must be estimated. Utilization factor, which depends on the type of op...
متن کاملA Numerical Investigation of TBM Disc Cutter Life Prediction in Hard Rocks
There is a direct relationship between the efficiency of mechanized excavation in hard rocks and that of disc cutters. Disc cutter wear is an important effective factor involved in the functionality of tunnel boring machines. Replacement of disc cutters is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate, and has a major effect on the total...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملChapter 50 A NEW MODEL FOR PERFORMANCE PREDICTION OF HARD
A new theoretical/empirical model has been developed for performance prediction of hard rock TBMs. The model uses information on the rock properties and cutting geometry to calculate TBM rate of penetration. The model can also be used for TBM butterhead design optimization to achieve maximum performance in a given geology.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014