Prediction of hard rock TBM penetration rate based on Data Mining techniques

ثبت نشده
چکیده

The aim of this work is to use Data Mining tools to develop models for the prediction of hard rock tunnel boring machine (TBM) penetration rate (ROP). A database published by Yagiz (2008) was used to develop these models. The parameters of the database were the uniaxial compressive strength (UCS), an index used to quantify the brittleness and toughness and denominated peak slope index (PSI), the distance between the planes of weakness (DPW), the angle between tunnel axis and the planes of weakness (α) and the output parameter rate of penetration (ROP). The R program environment was used as a modeling tool to apply the artificial neural networks (ANN) and the support vector machine (SVM) algorithms and the corresponding models. These models were compared with two equations presented by Yagiz (2008) and Yagiz and Karahan (2011). It was concluded that the ANN model has the best performance. Moreover, these new models allowed computing the importance of the different input parameters for predicting machine performance. It was concluded that PSI is the most important parameter and UCS is the less important parameter. RÉSUMÉ : L'objectif de cette étude s’agit d'utiliser des outils de Data Mining en vue de développer des modèles de prévision de la taux de pénétration d’un tunnelier dans les roches dures (ROP). Une base de données publiée par Yagiz (2008) a été utilisée pour développer ces modèles. Les paramètres de la base de données comprend la résistance en compression uniaxiale (UCS), un index que permettre mesurer la fragilité et la ténacité appelé d’index de pic maximal (PSI), la distance entre les plans de faiblesse (DPW), l'angle entre l'axe du tunnel et le des plans de faiblesse (α) et le paramètre de sortie dénommé de taux de pénétration (ROP). L'environnement du programme R a été utilisé comme un outil de modélisation pour appliquer les algorithmes des réseaux de neurones artificiels et des machines à vecteurs de support et leurs modèles correspondants. Ces modèles ont été comparés à deux équations présentées par Yagiz (2008) et Yagiz et Karahan (2011). On a conclu que le modèle des réseaux de neurones artificiels a été la meilleure performance. En outre, ces nouveaux modèles ont permis le calcul de l'importance des différents paramètres d'entrée pour prévoir la performance de la machine. Il a été conclu que l'PSI est le paramètre le plus important et l’UCS est le paramètre moins important.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION

key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...

متن کامل

Estimation of penetration rate of tunnel boring machines using Monte-Carlo simulation method

One of the most important parameters used for determining the performance of tunnel boring machines (TBMs) is their penetration rate. The parameters affecting the penetration rate can be divided in two categories. The first category is the controllable parameters such as the TBM technical characteristics, and type and geometry of the tunnel, and the second one is the uncontrollable parameters s...

متن کامل

Evaluation of TBM Utilization Using Rock Mass Rating System: A Case Study of Karaj-Tehran Water Conveyance Tunnel (Lots 1 and 2)

Successful application of a TBM in a project requires investigating both the ground conditions and the machine and backup system design features. Prediction of the machine performance is very important as it has a big effect on the duration of the project and the costs. In this respect, both penetration rate and advance rate must be estimated. Utilization factor, which depends on the type of op...

متن کامل

A Numerical Investigation of TBM Disc Cutter Life Prediction in Hard Rocks

There is a direct relationship between the efficiency of mechanized excavation in hard rocks and that of disc cutters. Disc cutter wear is an important effective factor involved in the functionality of tunnel boring machines. Replacement of disc cutters is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate, and has a major effect on the total...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

Chapter 50 A NEW MODEL FOR PERFORMANCE PREDICTION OF HARD

A new theoretical/empirical model has been developed for performance prediction of hard rock TBMs. The model uses information on the rock properties and cutting geometry to calculate TBM rate of penetration. The model can also be used for TBM butterhead design optimization to achieve maximum performance in a given geology.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014